Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5548, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684279

RESUMO

We report the emergence of dark-excitons in transition-metal-dichalcogenide (TMD) heterostructures that strongly rely on the stacking sequence, i.e., momentum-dark K-Q exciton located exclusively at the top layer of the heterostructure. The feature stems from band renormalization and is distinct from those of typical neutral excitons or trions, regardless of materials, substrates, and even homogeneous bilayers, which is further confirmed by scanning tunneling spectroscopy. To understand the unusual stacking sequence, we introduce the excitonic Elliot formula by imposing strain exclusively on the top layer that could be a consequence of the stacking process. We further find that the intensity ratio of Q- to K-excitons in the same layer is inversely proportional to laser power, unlike for conventional K-K excitons. This can be a metric for engineering the intensity of dark K-Q excitons in TMD heterostructures, which could be useful for optical power switches in solar panels.

2.
ACS Nano ; 15(2): 2849-2857, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33470093

RESUMO

Unusually high exciton binding energies (BEs), as much as ∼1 eV in monolayer transition-metal dichalcogenides, provide opportunities for exploring exotic and stable excitonic many-body effects. These include many-body neutral excitons, trions, biexcitons, and defect-induced excitons at room temperature, rarely realized in bulk materials. Nevertheless, the defect-induced trions correlated with charge screening have never been observed, and the corresponding BEs remain unknown. Here we report defect-induced A-trions and B-trions in monolayer tungsten disulfide (WS2) via carrier screening engineering with photogenerated carrier modulation, external doping, and substrate scattering. Defect-induced trions strongly couple with inherent SiO2 hole traps under high photocarrier densities and become more prominent in rhenium-doped WS2. The absence of defect-induced trion peaks was confirmed using a trap-free hexagonal boron nitride substrate, regardless of power density. Moreover, many-body excitonic charge states and their BEs were compared via carrier screening engineering at room temperature. The highest BE was observed in the defect-induced A-trion state (∼214 meV), comparably higher than the trion (209 meV) and neutral exciton (174 meV), and further tuned by external photoinduced carrier density control. This investigation allows us to demonstrate defect-induced trion BE localization via spatial BE mapping in the monolayer WS2 midflake regions distinctive from the flake edges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...